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Abstract
Technology is developing rapidly nowadays. As
automation of vehicles is becoming increasingly
mature, it has been a topic of focus. At the same
time, the automotive industry is seen to be
making a monumental paradigm shift from
manual to semi-autonomous to fully
autonomous vehicles. As such, this paper
attempts to offer an approach for path planning
of an autonomous vehicle based on the artificial
potential field method. To evaluate the
performance of the proposed approach, the
algorithm is verified on MATLAB R2021b, by
assuming that the autonomous vehicle is a
particle. The result shows that this approach can
basically complete the obstacle avoidance
function. However, this approach inevitably
encounters some problems in some cases. In the
search for better performance of this function,
we adjusted some environmental parameters
and find out the effect of these changes. At the
end of the paper, we conclude with solutions
corresponding to several possible problems,
according to the results from the previous
search and some articles.
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Introduction
Distracted driving has become one of the major
reasons for the increasing number of road
accidents worldwide. According to a study by
National Highway Traffic Safety
Administration (NHTSA), in the US alone,
3477 people were killed and 391,000 were
injured due to distracted driving in 2015
(NHTSA, 2015). These compelling statistics
demonstrate the significant necessity of
evolution in the automotive industry to migrate
away from traditional manual driving to
different levels of vehicle automation step by
step. It is believed that through this migration,
artificial intelligence (AI) intervenes in. The
advantage of artificial intelligence (AI) over
humans is its great ability to real-control in a
dynamic environment, allowing it to make
accurate judgments about the environment in a
very short time. Thus accidents can be avoided
and the possibility of distracted driving can be
eliminated.

The History of Autonomous Vehicles
Historical advancements through time have had
a major impact on the currently available
autonomous technologies. This section will
focus on some of those major landmarks
(Bimbraw, 2015). One of the very first
autonomous cars was built in 1926 and was
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called the Linriccan Wonder (Bimbraw, 2015).
The operating principle was very simple. It
consisted of a transmitting antenna that captured
radio signals from another car that would be
following it. The car's motion was then
controlled by small electric motors which were
in turn connected to circuit breakers receiving
signals from an antenna. In December 1926,
Achen Motors showcased a modified version of
the Linriccan Wonder, in Milwaukee, which
was known as the Phantom Auto.

The year 1939 could be marked as another
major stepping stone in the development of
autonomous vehicles. Electric cars which were
powered using embedded circuits were
presented at the world fair by Normal Bel
Gedde (Bimbraw, 2015). General Motors had
sponsored their Futurama exhibit. Following
this, in 1953, RCA labs had built a small
autonomous car that would be controlled based
on a pattern of wires. General Motors in
collaboration with Leland Hancock and L.N.
Ress were able to develop this idea further and
take it to the actual road. As a result, Firebird,
which consisted of a series of experimental
semi-autonomous vehicles was launched in the
General Motors Auto show called Motorama in
the 1960s (Cranswick, 2013; Burgan, 1999;
Temple and Adler, 2006). This period had
already marked successful simulations of
primary vehicle controls such as automatic
braking, accelerating, and steering. These
vehicles mainly worked with the help of devices
which were installed within the roadway in
order to guide the vehicles.

Inspired by the Firebird, in 1966, a similar
driver-less car was developed by the
Communication and Control Systems
Laboratory team at the Ohio State University.
This technology of embedded devices within
the roadway guiding the vehicle had become
very popular in the 1960s. Following a similar
concept, vehicles were also controlled by
embedded magnetic cables. Citroen DS is one
such example of an autonomous car developed
by the Transport and Road Research Laboratory
in the UK (Cardew, 1970; Pressnell, 1999).

The concept of vehicle automation was well
supported by the Bureau of Public Roads in the
USA as well with their experimental initiative
of an electronically controlled highway, which
was well supported by states such as California,
Massachusetts, New York, and Ohio (Toyota,
2016). Following this, Bundeswehr University
Munich also developed an autonomous van
sponsored by Mercedes. In addition, the
Prometheus project conducted by EUREKA
during the period of 1987–1995 also gained a
lot of importance in the field of autonomous
vehicles (Ming et al., 1993; Flyte, 1995). Some
of the other autonomous vehicle projects during
this period included the ones by the US
Department of Defense's Defense Advanced
Research Projects Agency, Carnegie Mellon
University, the Environmental Research
Institute of Michigan, the University of
Maryland, Martin Marietta, and the SRI
International (Bimbraw, 2015). The combined
project with the various universities was known
as the Autonomous Land Vehicle Project (Davis
et al., 1987; Leighty, 1986; Lowrie et al., 1985;
Chandran et al., 1986).

Furthermore, various political changes mainly
in terms of the ISTEA Transportation
Authorisation Bill of 1991 in addition to the
establishment of the National Highway System
Consortium in US became major stepping
stones in the development of driver-less
vehicles. Daimler – Benz's VaMP,
Bundeswehr University Munich's Vita-2,
Dickmanns' driver-less S-Class Mercedes,
Carnegie Mellon University's Navlab, more
popularly called No Hands Across America or
NHOA, and Alberto Broggi's ARGO were some
of the major exciting successful
autonomous-capable vehicle projects during the
period of 1990s (Behringer and Muller, 1998;
Wenger, 2005; Franke et al., 1997; Thorpe et al.,
1991; Pomerleau, 1993; Broggi et al., 2000).

Finally, more sophisticated and efficient designs
of autonomous vehicles were explored in 2000s
(Bimbraw, 2015). Various off-road, military as
well as public transportation options were
evaluated for the implementation of
autonomous capabilities. One prominent
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example is a public ground transportation
system called ParkShuttle, which was
implemented in the Netherlands (Shladover,
2007; Panayotova, 2003; Andréasson and
passion, 2001). United States' efficient military
demo vehicles became exemplars in
demonstrating the application of autonomous
vehicles (Hong et al., 2000).

Typical Autonomous Vehicle System
This section provides an overview of the
various stages involved in an ADAS
architecture. Figure 1 depicts the major steps
involved in the functionality of an
autonomous-capable vehicle from a high level
perspective (Kato et al., 2015). Autonomous
vehicle actions can be classified into three
broad categories – see, decide and execute
(Patchett, 2015) .

Figure 1. High-level ADAS architecture

Perception: The perception module helps to
accurately sense the driving environment of the
autonomous vehicle. Simultaneous Localization
and Mapping is one of the most important and
primary steps (Kato et al., 2015). The
autonomous vehicle has to be first sensed and
accepted into its driving environment. Then an
accurate real-time 3D map could be generated
and updated frequently as the vehicle goes
through its drive cycle. As described in Kato et
al. (2015), a three dimensional Normal
Distributions Transform algorithm (Magnusson
et al., 2007) can be used in order to perform
accurate matching and mapping operations with
the 3D cloud data.

Following the localization step, the Object
Detection stage needs to be taken care of. The
autonomous vehicle needs to detect all kinds of
objects including moving vehicles and

pedestrians, motorcycles, bicycles, animals,
stationary vehicles and pedestrians, traffic
signals, stop signs and the other dynamic and
static objects present in the driving environment.
In order to reduce the computation cost, it is
very important to focus the object detection
only on a specific area or road which is of
interest. As specified in Kato et al. (2015), the
Deformable Part Models Algorithm can be used
for accurate object detection (Felzenszwalb et
al., 2010). In McNaughton (2011), to increase
computational efficiency, parallel algorithms
implemented on graphics processing units
(GPU) are designed to accelerate the
information processing.

The next step is called Object Tracking (Kato et
al., 2015). In addition to detecting where a
particular object is in the concerned scope of
space on the road, it is also vital to track the
changes in their position. In other words, the
motion of the objects needs to be detected and
updated in real time. This will provide the
autonomous vehicle with a better understanding
of its dynamic environment, which in turn will
be helpful in updating its intelligent control as
part of a closed-loop control system.

Projection and Re-projection are the next steps
in the process of accurate perception (Kato et al.,
2015). Once the objects’ changing position has
been detected using the various sensors and the
cameras, the information needs to be
summarized and combined in order to get a
better depth estimate of the interested space on
the road. In addition, this information can be
used to further update the three-dimensional
cloud data in order to have real-time path
updates.

Mission planning: Once the path is finalized,
the Mission Planning step (Kato et al., 2015)
could be initialized where the required action of
the autonomous vehicle is estimated based on
the required functionality. For example, in a
Park Assist or Self Parallel Parking
functionality, the autonomous vehicle could
take over and accurately park the car depending
on the parking boundaries detected. In an
Adaptive Cruise Control strategy, the mission
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planner could be helpful in planning the
required motion of the vehicle based on the
dynamic traffic and surroundings. This paper
will focus on the implementation of path
planning, which belongs to this mission
planning module.

Motion planning: Following Mission Planning
then, is the Motion Planning step (Kato et al.,
2015). In other words, once the mission or the
destination is planned, the motion or the
maneuver which needs to be performed by the
autonomous vehicle in order to accurately and
optimally (time, cost and fuel) reach the
programmed destination needs to be planned.
The use of conformal spatial and temporal
lattices (McNaughton et al., 2011) for planning
the motion according to the changes in the
environment has been demonstrated in Kato et
al. (2015).

Navigation: Navigation or Path Following is the
concluding step (Kato et al., 2015). Based on a
planned path, using the previous steps, the
autonomous vehicle controller aids in keeping
the vehicle on the desired path for the entire trip.
As suggested in Kato et al. (2015), the Pure
Pursuit Algorithm can be used for the path
following step (Coulter, 1992). The aim is to
divide the path into manageable milestones. An
error calculation would be done in real-time in
order to make sure that the vehicle is on the
desired trajectory at every milestone. In case of
a significant deviation, the control and tracking
input would be updated accordingly in order to
cover the difference. A smaller duration in
between the milestone checks would result in
more accurate vehicle control.

Different Levels of Vehicle Automation
When it comes to autonomous vehicles, there is
a common misconception that an autonomous
vehicle can only refer to a completely driverless
vehicle. However, that is not the complete story.
There are various levels of autonomy that can
categorize these vehicles. According to the
Society of Automotive Engineers (SAE) J3016
standard, there are six distinct levels of Vehicle
Automation (SAE, 2014).

These levels are categorized based on four
parameters – control of lateral and longitudinal
vehicle motion, Object and Event Detection and
Response (OEDR), Dynamic Driving Task
(DDT) and Operational Design Domain (ODD).
OEDR mainly consists of the perception,
response formulation and reaction with an
autonomous vehicle. DDT includes all of the
vehicular activities performed that contribute to
a particular motion of the vehicle. This does not
include any planning type of strategic activities
(SAE, 2014). ODD refers to a scope of
conditions in which the vehicle has been
designed to operate in. Depending on how the
responsibility for these 4 categories is allocated
between a human driver vs. the Automated
Driving System (ADS), a level of vehicle
autonomy is assigned.

These six levels can be summarized in a table,
as shown below.

Table 1. Different levels of Vehicle Automation
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Level 0: Level 0 (No Driving Automation) is
the first level where the driver is mainly
responsible for all the major control of the
vehicle consisting of steering, braking and
throttle. At this level, although the driver is
taking the responsibility for the entire DDT,
other active safety systems may be present in
the vehicle. Blind-spot monitoring, collision
warning and lane departure warning systems are
some examples of level 0 automation.

Level 1: Level 1 (Driver Assistance) is the
second level of vehicle automation. At this level,
the driver is still mainly responsible for the
overall vehicle control. However, level 1
automation allows for the use of an automated
system that may support the driver in only one
of the lateral or longitudinal vehicle motion
control. The responsibility for the OEDR and
DDT fallback is still on the driver. Some
examples of level 1 automation include adaptive
cruise control, electronic stability control,
automatic braking and lane-keeping.

Level 2: The next level of autonomy is Level 2
(Partial Driving Automation). In this level, the
ADS is permitted to take control of both the
lateral and the longitudinal vehicle motion.
However, the driver is still expected to
supervise the ADS and take responsibility for
the OEDR and DDT fallback.

Level 3: The fourth level of autonomy is
referred to as Level 3 (Conditional Driving
Automation). At this level, the autonomous
system is able to take primary control of the
vehicle, including the lateral and longitudinal
control and the OEDR, ensuring a safe
operation. However, it is advisable for the
driver to be present in case a switch of the
operation mode is intended by the ADS from
autonomous to driver-controlled. As such, the
DDT fallback still remains as the human driver,
adding additional layers of complexity, unlike
the other levels lower and higher than this.

Level 4: The fifth level of vehicle automation is
termed as Level 4 (High Driving Automation).
In this level of vehicle automation, the
automated system is expected to take full

control of the vehicle with no intervention
expected from the driver. In other words, the
system is responsible for the OEDR, the
vehicle's full control and the DDT fallback.
However, the ODD is still expected to be
limited, unlike Level 5, which is the final level.

Level 5: In Level 5 (Full Driving Automation),
the ADS is again expected to take full
responsibility for the entire vehicle control,
OEDR and the DDT fallback, however, the
ODD is no longer limited to a specific design
domain scope.

Method
For the realization of automation of vehicles,
we raise a method called the artificial potential
field method. The artificial potential field
method is widely used for autonomous vehicle
path planning due to its efficient mathematical
analysis and simplicity. Path planning refers to
the fact that the robot finds a collision-free
optimal path from the starting point to the target
point in the workspace with obstacles, on the
premise of one or more optimization criteria
among the shortest moving path, the shortest
moving time and the minimum working cost.
Numerous algorithms for autonomous vehicle
path planning have been developed. Herein, we
propose an improved artificial potential field
method base on gravity chain that connects with
the beginning and the ending. To evaluate the
performance of the proposed method, by
assuming that the autonomous vehicle is a
particle, the algorithm is verified on MATLAB
R2021b. In the discussion section, we also
investigate the influence of the parameters of
the environment and goals to the path planning
of autonomous vehicles.

The Basic Principles of Artificial Potential
Field Method
Let us illustrate the mechanism of action of the
artificial potential field method with two
analogies. First, we compare the configuration
space to a potential field plane and the robot (of
the current configuration) to a point in the space.
If we let the starting point of the robot and the
obstacle have a positive charge, the endpoint
has a negative charge and the robot has a
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positive charge. Due to the principle that the
same charges repel and opposite charges attract,
the robot will move along a path towards the
endpoint under the force of the electric field and
avoid the positively charged obstacles, as
shown in Figure 2.

Figure 2. Electric potential field

Similarly, we can compare the configuration
space to a region with undulating terrain. Where
the starting point and obstacles are located in
the higher area while the end point is located in
the lower area, the robot is treated as a sphere.
Then under the effect of gravity, the robot will
slide down a certain trajectory from the higher
starting point to the lower ending point and
avoid the higher obstacles. This is shown in
Figure 3.

Figure 3. Gravitational potential field
(image from Ref. [14])

The two examples above are the mechanism of
action of an electric potential field and a
gravitational potential field, both of them are
natural potential fields. The artificial potential
field method involves constructing an artificial

potential field to mimic this mechanism of
action when the starting point, endpoint and
obstacle locations are known. The advantage of
the artificial potential field method is that it is in
fact a feedback control strategy that is robust to
control and sensing errors; the disadvantage is
that there is a local minima problem and
therefore there is no guarantee that a solution to
the problem will be found.

Main Program

The main program is started by initializing
parameters of the artificial potential field
algorithm, including the gravitational gain of
the attractive potential function, the repulsion
gain of the repulsive potential function, and the
distance threshold of the obstacle's action
(greater than which the obstacle does not exert a
repulsive influence). Then initialize the starting
point and the target point. The environment
model is subsequently demonstrated to obtain
the position of obstacles and extend the
obstacle's border by their length and width. The
position and size of the obstacles are randomly
generated.

In the calculation part of the main program, the
angle calculation module, the attractive
potential calculation module, the repulsive
potential calculation module and the gradient
descent calculation module were called. All of
these calculations can decide the next position
that the autonomous vehicle will move to.
At last, the path generated by the proposed
method for autonomous vehicles is shown. The
result can be illustrated in static or dynamic
images.

Computation of Angles
This is expressed in program code as follows:
Function

Y=compute_angle(X,Xsum,n)%Y is the angle
vector between the x-axis and the attractive
force, the repulsive force. X is the coordinate of
the starting point , X sum is the coordinates
vector of the target point and the obstacles,
which is a (n+1)*2 matrix.
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for i=1:n+1

deltaX(i)=Xsum(i,1)-X(1);

deltaY(i)=Xsum(i,2)-X(2);

r(i)=sqrt(deltaX(i)^2+deltaY(i)^2);

if deltaX(i)>0

theta=acos(deltaX(i)/r(i));

else

theta=pi-acos(deltaX(i)/r(i));

end

if i==1

angle=theta;

else

angle=theta;

end

Y(i)=angle;

%Save every angle in Y vector. The first
element is the angle to the target point, others
are the angles to the obstacles

end

end

Computation of Attractive/ Repulsive
Potential
We use the potential function U to create
artificial potential fields. A potential (field)
function is a differentiable function, and the
magnitude of the potential function at a point in
space represents the strength of the potential
field at that point. The simplest potential

function is the attractive/repulsive potential
function. The idea behind its action is simple:
make the target attractive to the robot and the
obstacle repulsive to the robot. The potential
function U(q) at a point is expressed as the sum
of the attractive and repulsive potentials:

U(q) = Uatt(q) + Urep(q)

One of the most common expressions for the
gravitational potential function is as follows:

Uatt(q) =
1
2
ζd2(q, goal)

ζ - gravitational gain

d2(q, qgoal) - distance from current point q to
target point qgoal

The most common expressions for the repulsive
potential function are as follows:

����(�)

=
1
2
�(

1
�(�)

−
1
�∗ )

2, �(�) ≤ �∗

0 �(�) > �∗

�(�) - the distance of the point q from its
nearest obstacle

� - repulsion gain

�∗ - the distance threshold of the obstacle's
action, greater than which the obstacle does not
exert a repulsive influence

Of course, the design of the above gravitational
and repulsive potential functions can be
problematic in some cases, so there are many
ways to improve them, which we will discuss
later.

Computation of Gradient Descent
If the value of the potential function U(q) at a
point q is taken to be the energy level at that
point, then the gradient ∇U(q) can be
considered as the force vector at that point,
defined as
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∇U(q) = DU(q)T =
∂U
∂q1

(q), . . . ,
∂U
∂q�

(q)
T

It can be seen that the direction of the gradient
at a point is the direction in which the potential
function grows fastest.

The gradient descent method, on the other hand,
allows the robot to start at the initial point and
keep walking in the opposite direction of the
gradient until the gradient is 0. This is
expressed in pseudo-code as follows:

Input：A method for calculating the gradient at
point q∇U (q)

Output：A sequence if trajectories {q(0), q(1), ...,
q(i)}

q(0) = q_start

i = 0

while ∇U (q(i)) ≠ 0 do

q(i + 1) = q(i) + α(i)∇U (q(i))

i = i + 1

end while

Results
The path planning result is shown in Figure 4.

Figure 4. Results of path planning by improved
Artificial Potential Field Method

The figure shows that the autonomous vehicle
staring from the origin and follows the shortest
path to the target point. When the autonomous
vehicle encounters obstacles, it redirects its
route to bypass the obstacles. The simulation
results show that it is a simple and effective
method for obstacle avoidance and path
planning of autonomous vehicles.

Influence of the Position Distribution of
Obstacles
In the code, the variable a is used to control the
distribution region of the obstacles. By setting a
different value for a, the distribution region of
the obstacles will be different.

Starting from a = 100, the position of obstacles
is distributed throughout the entire region
[0-100, 0-100]:

Figure 5. Results of path planning where the position
of obstacles is distributed throughout the region [0-100,

0-100]

The image shows that all obstacles are
randomly generated and distributed in the given
area. The autonomous vehicle travels in a
straight line through the region with no
influence of obstacles. When it encounters a
region of the congregation of obstacles, it
redirects its route to bypass the obstacles and
finally reaches the target point.
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When a = 50, the position of obstacles is
distributed in the region [0-50, 0-50]:

Figure 6. Results of path planning where the position
of obstacles is distributed throughout the region [0-50,

0-50]

The image shows that all obstacles are
randomly generated and distributed in the given
area. When the autonomous vehicle encounters
a region of the congregation of obstacles [0-50,
0-50], it redirects its route to bypass the
obstacles. Then in the region [50-100, 50-100],
its path is a straight line and finally reaches the
target point.

When a = 25, the position of obstacles is
distributed in the region [0-25, 0-25]:

Figure 7. Results of path planning where the position
of obstacles is distributed throughout the region [0-25,

0-25]

The image shows that all obstacles are
randomly generated and distributed in the given
area. When the autonomous vehicle encounters
a region of the congregation of obstacles [0-25,
0-25], it redirects its route to bypass the
obstacles. However, there is a risk of hitting the
obstacles because the obstacles are too dense.
The gravitational gain may need to be adjusted
to avoid this kind of situation. Then in the
region [25-100, 25-100], its path is a straight
line and finally reaches the target point.

Influence of the Number of Obstacles
In the code, the variable n is used to control the
number of obstacles. By setting a different
value for n, the number of the obstacles will be
different.
When n = 5, the number of obstacles is 5:

Figure 8. Results of path planning where the 5 random
obstacles are distributed throughout the entire region

The image shows that all the 5 obstacles are
randomly generated and distributed in the whole
region. However, they almost do not affect the
path of the autonomous vehicle because they
are too sparse.

When n = 10, the number of obstacles is 10:
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Figure 9. Results of path planning where the 10
random obstacles are distributed throughout the entire

region

The image shows that all the 10 obstacles are
randomly generated and distributed in the whole
region. When the autonomous vehicle gets
influenced by the obstacles, it redirects its route
to bypass the obstacles.

When n = 20, the number of obstacles is 20:

Figure 10. Results of path planning where the 20
random obstacles are distributed throughout the entire

region

The image shows that all the 20 obstacles are
randomly generated and distributed evenly in
the whole region. When the autonomous vehicle
gets influenced by the obstacles, it redirects its
route to bypass the obstacles.

When n = 30, the number of obstacles is 30:

Figure 11. Results of path planning where the 30
random obstacles are distributed throughout the entire

region

The image shows that all the 30 obstacles are
randomly generated and distributed in the whole
region. When the autonomous vehicle gets
influenced by the obstacles, it redirects its route
to bypass the obstacles. However, there is a risk
of it hitting the obstacles because the obstacles
are too dense. The gravitational gain may need
to be adjusted to avoid this kind of situation.

Influence of the Starting Point
In the code, the array Xo stores the x, and y
coordinates of the starting point. By setting a
different value for the x,y coordinates, the
autonomous vehicle will start the driven route
from different points.
When it starts at Xo = [0,0], the origin:

Figure 12. Results of path planning where the starting
point is (0,0) and the target point are (100,100)
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The image shows that the autonomous vehicle
starts from point [0,0] and reaches the target
point. When the autonomous vehicle gets
influenced by the obstacles, it redirects its route
to bypass the obstacles.
Change the x-coordinate, the starting point is
Xo = [50,0]:

Figure 13. Results of path planning where the staring
point is (50,0) and the target point is (100,100)

The image shows that the autonomous vehicle
starts from point [50,0] and reaches the target
point. When the autonomous vehicle gets
influenced by the obstacles, it redirects its route
to bypass the obstacles. The whole driven route
is steeper than before.

Change the x-coordinate, the starting point is
Xo = [90,0]:

Figure 14. Results of path planning where the starting
point is (90,0) and the target point is (100,100)

The image shows that the autonomous vehicle
starts from point [90,0] and reach the target
point. When the autonomous vehicle gets
influenced by the obstacles, it redirects its route
to bypass the obstacles. The whole driven route
is very steep. According to the attractive
function, when d (the distance between the
starting point and the target point) becomes
smaller, the driven route depends on the
repulsive function more. That`s the reason why
the closer between the starting point and the
target point, the more effective for the
autonomous vehicles to bypass the obstacles.

Influence of the Target Point
In the code, Xsum(1,1) stores the x-coordinate of
the target point and Xsum(1,2) stores the
y-coordinate of the target point. By setting
different values for them, the autonomous
vehicle will end the driven route at different
points.
Change the y-coordinate, the target point is [100,
50]:

Figure 15. Results of path planning where the staring
point is (0,0) and the target point is (100,50)

The image shows that the autonomous vehicle
starts from the origin and reaches the target
point [100, 50]. When the autonomous vehicle
gets influenced by the obstacles, it redirects its
route to bypass the obstacles. The whole driven
route is gentler than before.

Change the y-coordinate, the target point is
[100,30]:
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Figure 16. Results of path planning where the starting
point is (0,0) and the target point is (100,30)

The image shows that the autonomous vehicle
starts from the origin and reaches the target
point [30, 100]. When the autonomous vehicle
gets influenced by the obstacles, it redirects its
route to bypass the obstacles. The whole driven
route is gentler than before.

Change the coordinates of both the two points,
the starting point is [0,20] and the target point is
[100,30]:

Figure 17. Results of path planning where the starting
point is (0,20) and the target point is (100,30)

The image shows that the autonomous vehicle
starts from the point [0,20] and reaches the
target point [100,30]. When the autonomous
vehicle gets influenced by the obstacles, it

redirects its route to bypass the obstacles. The
whole driven route is very gentle.

Influence of the Distance Between Starting
Point and Target Point
Here is one special case.
Change both x, y coordinates, the starting point
is [50,50]:

Figure 18. Results of path planning where the starting
point is (50,50) and the target point is (100,100)

Change both x, y coordinates, the target point is
[50,50]:

Figure 19. Results of path planning where the starting
point is (0,0) and the target point is (50,50)

The first image shows that the autonomous
vehicle starts from starting point [50,50] and
reaches the target point [100,100]. The second
image shows that the autonomous vehicle starts
from starting point [0,0] and reaches the target
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point [50,50]. When the autonomous vehicle
gets influenced by the obstacles, it redirects its
route to bypass the obstacles. Though their
starting points and target points are different,
the distance between the two points are the
same. That`s the reason why their driven routes
are very similar.

Improvements to the Performance of
Artificial Potential Field Method
This research demonstrates only the simplest
implementation of the artificial potential field
method. When applying this method in real life,
there are often a number of problems that
require corresponding improvements. The
following sections will describe briefly several
common problems and their solutions.

Improvement of the gravitational potential
function: The existing gravitational potential
function takes values that are proportional to
d2(q, qgoal). In such a design, if the current point
is too far away from the target point, a large
gravitational potential is created, making the
robot move too fast. This can be solved by
using a segmented gravitational potential
function, i.e. by reducing the power of d(q,
qgoal).

Improvement of the repulsive potential function:
The existing repulsive potential function takes
values that depend on the distance between the
current point and the nearest obstacle. In such a
design, if the current point is equidistant from
two obstacles, it may cause the robot to jump
back and forth on the mid-line between the
obstacles. In response, we can redefine the
repulsive potential function as the distance
between the current point and the nearest
obstacle point. That is, regardless of the
coordinate position of the obstacle itself, as long
as a point on the obstacle is closest to the
current point, this distance defines the repulsive
potential function.

Improvement of calculation of distance: In
general, we use linear distance to measure the
distance between two points. But for pixel or
grid maps, how can the distance between two
pixel points or grids be calculated quickly and

reasonably well? Reference gives a Brushfire
algorithm to use.

The concern of the local minima problem: As
shown in the figure, the artificial potential field
method sometimes encounters the local minima
problem. At the local minima point, although
the gradient is zero, it is not the endpoint we
want. For such cases, we generally introduce
the idea of sampling planning, adding a
perturbation (random walk) or backtracking at
the local minima with a view to jumping out of
the local minima. A method called wave-front
planning can also be used to eliminate the
problem of local minima by introducing a time
parameter.

Figure 20. The artificial potential field method with the
local minima problem

Conclusion
The algorithm of Artificial Intelligence (AI)
continues developing and maturing, making
automation of vehicles a possible thing. The
advantage of artificial intelligence (AI) over
humans is its great ability of real-control in a
dynamic environment, allowing it to make
accurate judgments about the environment in a
very short time. Thus accidents can be avoided
and the possibility of distracted driving can be
eliminated.
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For the realization of automation of vehicles,
we raise a method called the artificial potential
field method. The results tested on MATLAB
R2021b show that the artificial potential field
method is feasible for the path planning of the
autonomous vehicle. Path planning refers to the
fact that the robot finds a collision-free optimal
path from the starting point to the target point in
the workspace with obstacles, on the premise of
the one or more optimization criteria among the
shortest moving path, the shortest moving time,
and the minimum working cost. Artificial
potential field method involves constructing an
artificial potential field to mimic the mechanism
of action of the electric potential field and
gravitational potential field when the starting
point, target point and obstacle locations are
known. This method can be widely used for the
path planning of autonomous vehicle due to its
efficient mathematical analysis and simplicity.
However, when applying this method in real life,
there are often a number of problems that
require corresponding improvements, including
the improvements of attractive and repulsive
potential, calculation of distance and concern of
local minima problem.
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